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Introduction
C

Over the past ten years considerable progress has been made in studying
various questions concerning rational approximation on unbounded sets. To
a large extent the starting point of this effort was the paper of Cody,
Meinardus and Varga [6] and this has led to investigations of best approxi-
mation properties in various settings [1-4, 8-9] and studies of the error
of best approximation [10-12].

In this paper we wish to study the best approximation properties of
strong uniqueness and continuity of the best approximation operator for
reciprocal polynomial approximation on [0, =) of continuous positive

functions tending to 0 as x -+ ». Thus, we define

(1) Col0, =) = (f € C[0, =): f(x) > 0, x [0, =) and Tim f(x) = 03,
X

and

(2) Rn= (%: Peﬂn, p(x) > 0, x e [0, '”)},n_>_1:

where I, denotes the class of all algebraic real polynomials of degree < n.
Furthermore, define |[f|| = sup{|f(x): x € [0, =)} in what follows. In
this setting, it is known that best approximations exist and are unique

[3, 4] and that the following characterization theorem holds:
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1

THEOREM 1 [4]. Let f e CE[O, w) ~ Rn with n > 1. Then p_* is the best
approximation to f from R on [0, =) iff .
n+l

(i) (standard alternation) there exist {x;}j_g» 0 < Xg < X < ... <X

i= n+1’

1 b e el
such that [f(xi) - E;T;;Y‘ = “f p*|‘, 1 0, ...,on+ 1 and

fx;) - 'p—*'(]x—i‘)'= -(fx;4q) 'AW%;]T)’ i=0, .com

or

(ii) (nonstandard alternation) 3p* < n - 1 and there exist {xii?go.
0 < Xy < Xq < < x_ such that f(x;) - - (-1)"" If - —L||
-0 ) G n i p*(x1$ p*h *

In both cases the points {xi} are called extreme points. Also, we
wish to note the for n > 1, p* cannot be a constant. Indeed, since
f(x) > 0 for all x € [0, =) and 1im f(x) = 0, then in order for the
reciprocal of a constant, c]—*, tox;z a best approximation to f, we must
have that c* = %where M = max f(x). Since f(x) + 0 as x +~ = we can
find Xg > 0 such that f(x) ’<(’>'r9| for x > Xg- It is then easilty seen

that for p*(x) = e(x - xo) + c* with € > 0 and sufficiently small that
[If - p]—*ll <|If - -cl;ll by a straighffomard continuity-compactness

argument.
In addition, it has been shown in [3] that if p1_* €R, is the best
approximation to f € CE[O, «) from R, with 3p* = n then both strong

uniqueness (i.e., [If - || - [If - =il > v k- 2=ll» v = v(f) >0
p p P P
for all %e Rn) and Lipschitz continuity of the best approximation operator
at f(i.e., [Jc- |l <8 lIf-all.8=8(f) >0, geCyl0, =) and - the
p Dg Pg

best approximation to g from Rn) hold. Furthermore, it was shown in [3]
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that for each f whose corresponding best approximation from Rn’ #;.
satisfies ?ap* < n - 2 the strong uniqueness theorem cannot hold. In

this present paper we shall prove that if fé& CB[O, =) has ’pl*' e Rn as.
its best approximation then (i) if 3p* < n - 2 (i.e. é%-is deficient

of order two or more) then the best approximation operator is discon-
tinuous at f and (ii) if ap* = n - 1 then the best approximation operator
is continuous at f. It remains open as to whether or not a strong

uniqueness theorem holds in the case that ap* = n - 1.

Main Results

In this section we state and prove our main results. The first

result establishing the discontinuity of the best approximation operator

“is given in two parts. The first theorem will treat this problem for

the case that either é%-is deficient of order three or more, or when
1

ey is deficient of order two and f - é%»possesses a standard alternating
sequence. In this case we can prove even stronger results concerning
the discontinuous behavior of the best approximation operator. The
second theorem will treat the discontinuity of the best approximation
operator when j%-is deficient of order two with only nonstandard alter-
nation holding for f - é%; Our final result will be to prove that the
best approximation operator is continuous whenever é%-is deficient of
order one.

THEOREM 2. Let fe CB[O, ®) A R, and p]_* €R, be the best approximation

to f from Rn' Further, assume that 3p* < n - 2 and that if ap* = n - 2

Bsiiitapmies oo o
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then f - F]*- possesses a standard alternating set. Then, given ¢ > 0
1

there exists § > 0, {5;} C R, and {gk}“':=1 CC;[O. =) such that each
k=1 '

9 has p—k- as its best approximation from Rn’ gk converges uniformly to

f on [0, =) and 6 < ||p1—*- pi-|| < ¢ for all k.
. k

REMARK. This theorem establishes that not only is the best approximation
operator discontinuous at f but, in fact, that it is also not possible for

a local (relative to p1—*) strong uniqueness result to hold.

Proof. Set E

€ 5_%. Set § = -g— Since we are assuming throughout this paper that n > 1,

If - 51?” > 0 and assume without loss of generality that

we have that p*(x) is not identically equal to a constant which implies

that 1im p*(x) = =. Select B > 0 such that f(x) < ¢ and p*(x) > % for
X

all x > 8. Set e = (§+ *2 )"] and note that for k > g, p*(k) > e,.
k 4 k = k

P
Define Pk T, by

2 X . 232 €k )
P(x) = e + (p*(x) - )l(g - V° + Sy - el k > 8. _
e
k
Since for all x > 8,p*(x) > e,, we have that (p*(x) - e )[(¥ - 1)% + —(T_] >0
k k k p*(k ‘ek
implying that pk(x) > e > 34_5: for x > 8.

Next, observe that e, -+ -l- as k - » and (ﬁ- - 1)2 converges uniformly

to 1 on [0, 8] as k + =. Thus, Pk converges uniformly to p* on 0._3%45_.1[
3 suee~adon FOr .-!

k -+ o, NON, let i Wale Gkl )
L.s TAB H {
Uz -znsuaced _ !

n=min( min f(x), min 'pﬂl'f)" €) | Ju-tific.tion__
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' 1 1 n -
and select u > 8 such that for k > u, max - <%. This
xe[0,8] p(x)  p*(x) 2

1 1 n
implies thatmzp—*(;y-%zz>0f°r all x e [0, 8] and k > q.

Hence ¢€Rn for k > u as pk(x) >0 for all x €[0, =). |

p*}k) = g- ThUS, ‘

: o . 1
Now, since pk(k) = 2, we have that pkm -
"p]_k - =5l > & for all k > u. Also, for k > u we have that A

<3 <efor x € [0, 8]. In addition, for x > g we have

that —(—)- 4 and -:(;)- < — for k > u. Hence "p]_k - p]—*ll < € as claimed. |

Finally, define 9> for k > u, by

1 1
)+ 5t - G X € 10 8]
g (x) = 4f(x), x>8 +]]-(-

linear with endpoint values f(g) +

pkl(s) » p.}gy and f(s*{-), X [8,84{—]-

1 1
Clearly, g, € C[0. =), k > u and since f(x) + )~ ) 2 f(x) - % >0

: + 1 1
for x € [0, 8] we have that 9 € Co[O. ) for k > u. Since f(s)m-m
< f(p) + 3 < f(s) + i‘: f(s) + %;SE and f(g + {-) 5%—we have that
g‘(i)<3Eforxe[B B+1]111 (x) 3E ¢ Al

k\"’ =8 ’ kd 'mplying g, (x) < g for x > g. so,

"—- p*” <eg < t implies that —-(—T -T(—T E for x > 8. From

this it follows that gk(x) - ml ;‘C for x > 8. In addition, for

for x € [0, 8] we have that g, (x) - W}’U « #(x) - sx(zy and this implies

T

| ¥
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that g - F]k- exhibits the same alternating behavior as f - p]—,, on [0, =).

Thus, if f - 5’; has a standard alternating set sc does 9y - BL implying

that 5 is the best approximation to 9 from Rn on [0, =). If f - p e

Px p*

‘possesses only a nonstandard alternating set then so does g, - —]—. Since
k Pk

in this case we must have that Py < n - 3, we must have that P <N - 1

implying once again that p—‘k- is the best approximation to 9 from Rn on

[0, »). Since it is clear that g converges uniformly to f on [0, ®),

the proof is completed by relabeling the sequences {‘p]—k " and {gk}:w
k=p
1 i © .
as {5;} and {9k}k=]’ respectively.
k=] l

- For the case that ap* = n -2 and f - pl* has only a nonstandard

alternating sequence we have the slightly weaker theorem:

THEOREM 3. Let f € cB[o. ®) A Rn and p—]*- € Rn be its best approximation

from Rn Further, assume that 3p* =n - 2 and f - —1,—,- possesses only a

p
nonstandard alternating set. Then there exists {-pl-} c R, and
kst
{g’k}:_] C C;[O, =) such that for each k, i 2 is the best approximation to

Pk

gy from R on [0, =), gy converges uniformly to f on [0, =) and

3 3 7 , ko

B SESSR——
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Fo = S

Note that pk(x, t) is continuous on [0, =) x [0, %]. Define )

2e ¢ %(P*(") - e 2 %P*(x) 1% as p*(x) 1% for x > 8. Since

7

Proof. Select g > 0 such that p*(x) 3%, f(x) 5_%— and p*(x) is monotone

increasing for x > 8. For k > g, define

Pelxs £) = £+ (*(x) - LG - D2+ b=l 0t < F x> 0.

h(t) = min{pk(x. t): x € [B, 2k]} and observe that h is a continuous A
function of t, 0 < t < 1. In addition, h(0) = min{p*(x)(¥ - 1)%: x & [8, 2]} = 0
as k > 8 and that h(g) = mingg + (p*(x) - PLGE - V2 + ey x € [8,2pF

as p*(x) > %on [B, 2k]. Select e, € (0, {r) so that h(ek) = % Thus,
Py (x5 e) 3% > 0 for x € [, 2k]. Observe that P (X, e ) converges

] €k
uniformly to p*(x) on [0, gl as k + = since 0 < ¢, < &, - > 0 and
. s k =E* p*(k) e

(]’:- - 1)2 converges uniformly to 1 on [0, 8] as k + =.

Next, let : £ RN A

) 1 E
n= m‘lﬂ(xelEI(‘l)f:B]f(x), xelE’l;l"IB] m, E—) > 0.

Select u > 8 such that k > u implies that /k > 8, k > 1,
1 1 1. 1 n
max{ m- raoik x € [0, 8]} _<_~B-. Thus, for k > wu, m)-}_'2-> 0,
1
for all x é[O, 8]. This implies that for k > y, m)- is positive
and converges uniformly to 5;-](;)- on [0, g]. In addition, for k > u and

x € [8, /K] we have p, (x, e) > e, + (p*(x) - 'k)[('}["f 14

Py 4
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1 . i
max{m- x € [B, 2k]} = E we have that if t, € [8, 2k] is such

1 L
that P (B &) E then t, > /k for k > u.

~

- Next, note that for x > k > yu, pk(x, ek) is a monotone increasing

: e
function of x and that py (2, e ) = e, + (p*(2k) - e, )(1 + o Zkk : ek)

> p*(2k) 3%. Thus, Wf_% for x > 2k. Summarizing, we have

shown thatm%‘e‘;)‘i%fw x € [0, /k], Wi%fbr x > 2k and
Fk_b_tl_e_k)-: E for x € [k, 2k] with ty € [/k, 2k] a point at which the value E
is attained.

Next, define @, by E - o max{(w - f(x)): xe [8, 2k]}.
Since f(x) i%‘ for x > g and W = E we have that E - o > E - f(t})

3%E implying that %—z f(tk) > o. lety e [B, 2k] be such that

] s : 1 E
Pk\-Yp ek f(yk) E ak for each k > u. Since mi 8 for

x € [8, k] we have that Y € [k, 2k]. Also, since f(t,) >0as k > =

(as t, > =) it follows that o, » 0 as k » =. Noting that f(x) i% o

x € [B, =) and that E(xl._ek)'i% for x > 2k we have that |f(x) - —(——)-pk x], &

. ‘ o) ] - ] E
<E=<a for x €[B, =) and k > u. Also, since Pl & E and p—*(?k-)-is

| C ¥ 1 L.t Ik
we have that IIE - p*” Lo p;ﬁk’ ek) = P*(tk)l A

11




Now define gy by (for k > u)
Potare i oo eI, 81, (15) - et <€ ~ o
Pe{xs e )~ p*(x)’ S P*Ix]| = k

1 1
E-ak+m' XG[O, 8], f(x)-m>E-ak

) 1 1
g -E+ak+m,xe[0,B]sf(x)-p—*&y<-E+ak
gk(x) =4 4

£(x), X328+

Fi : , 1 1
, B+ f(g) + %
Tinear on [8, 8 + ] with endpoint values f(s) b (Es &) ~ 7 (8)

L and (8 + 3).

Observe that g, (x) > 0 for all x > 0. Indeed, for x € [0, 8] with

e 9 5 1 RS, n
‘f(*) )| < E - o we have that g, = f(x) + P (%o &) P (x] > f(x) - 3

3-3>0. For x € [0, 8] with f(x) -PT](Y)'> E - ap, g(x) = E - °k+pk x1, -
7E 1 & 1 ( )
.i-é-+——-(—-)-pk s > 0 and for x € [0, B] with f(x) - O -E + o,

P 1 i y 1 1 2l n
g (x) = =E + o + o e E+ oy + ooy * peTR, 6]~ () 2 f(x) - 3

o 1 1 n ]
>3 >0. Since f(8) +Pkr- &) ~ 7 (8) > f(8) -%?_§> 0and f(8 + ) >0

we have that g,(x) > 0 on [8, & + ]1;] and finally g, is positive on [8 + }(- =)

as f is. To see that gk(x) is continuous on [0, =) one must only check on
[0, 8] as for x > 8 it is clearly continuous. However, on [0, 8], gk(x)

is simply the truncation of f(x) - B;};)- to the range [-E + @ E - ak] plus
the continuous function W*l_eﬁ showing that 9 € C;LO, ®),

e e
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Next, let us consider lgk(x) - mx—l_e_)' : 'Note that by construction
R

gk(x) - Fk—(;]’Tk)- <E- o for x & [0, 8] and that, if {x; 1 i=0 with

Xg < Xp < .ee < Xp is a nonstandard alternating set for f - 517 then we

‘must have that Xq <8 and

1 = 1 5 -1
gk("i) = p.k-(_x'i’ _,ek = Sgn(f(xi) = p*(x')'. )(E - ak) = (-1 )n 1(5 - ak).
1L 1 E

Next, on [8, 8 + 1] we have that f(8) < & (8 + 1) < a"d |pk(,ek)"p*18)\5§

so that g, (8) 5%—and g (8 + ]];) 5,%. Thus, g, (x) 53- on [g, B + F]' Also,

1 E
recall that Plxe &) <8 " [0, /k] so that lgk(") lx ek)| Io"

] 1
(8, 8 + k']' Finally, we noted earlier that lf(x) 5 “—(—Hk Xs €

<E=-aq on

<E=-a on [0, »). Since there exists

1
[8, =) so that |g,(x) - B (% €
1

1
¢ f - s - - - c—
Yy e [/, 2k] at which (yk) —-(——)-pk Ve (E ak) we have that 9 Py

possesses a standard alternating set at the points Xg < Xp < eee < Xp <Yy

and thus p—1- is the best approximation to g from Rn on [0, =»). Finally, it
k

is a straightforward argument to prove that gy converges uniformly to f.

Thus, once again reindexing the sequence {51;}:% gives the desired result.

"Next, we wish to show that if f e c;[o. ») has 5!; as its best approxima-
tion from Rn with ap* = n - 1 then the best approximation operator is

continuous. This we do in the following theorem.

A bt %t 0

adn.
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THEOREM 4. Let f € CS[O. ) & Rn and let P be its best approximation from

Ry on [0, =) with ap* = n - 1. Then, the best approximation operator is

continuous at f.

Proof. Let {g }g_; € Cpl0, =) with g » f uniformly on [0, =). Further,

let -b]; eRn be the best approximation to g on [0, =) for each k. Then, |
we must prove that IB‘I - p1_*” +0 as k » =, Let us first note that

] ] : 1 ; 1
g, - P_k” < llgg - p=ll implying that '1(12 sup |9, - TJI” < :(12 sup [lg - o=l

1 1 1 1
= |If - gl =E. Also, E= [If - o5l < [If - 3;” < Nf- gl + llgy - ﬁll

implying that E = lim inf(E - [f - g, () < lim inf llgk - —]—H . Combining
k ko Pk

o and

these results gives that lim g, - LII = E. In addition, since
K+ Pk
1 1 : 1
E< |If-=—|| < If-g.l + |lg - =] we also have that lim [|[f - —]|| = E.
< "k” =3 kll *+ llgg Pk” o e

Next, fix y € [0, =) such that f(y) = max{f(x): x €[0, =)}. Then

since a constant cannot be a best approximation to f from Rn on [0, =) we
must have that 2E < f(y). Select § > 0 such that for xelI=[y-5,y+6]N[0,=)
we must have f(x) > Z(2E + f(y)) > 2E. Choose g such that k > 8 implies
that ||f - 5];” i%f- Then for k > 8 and x € I, we have that

0<m= zE-%Ef_f(x)-%Eip—k](;y:f(x)*%Ei IFll + 38 = m

In addition, observe that the inequality p—';J(I)'i M holds for all x ¢ [0, =)

|-

and k > 8. Let {p“} be a subsequence of {py}- Then, since }}5_ pv(x) <
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for all x € I, there exists a subsequence {pu} of {pv} such that pu
converges uniformly to some p € I, on I. This implies that the
coefficients of p, converge to the coefficients of p which in turn

jmplies that for each x € [0, «), pu(x) + p(x). Thus, we must have
1 1

S p(x) i,},‘ on I and M p(x) on [0, »). This last inequality shows

that pe R,- Furthermore, for x & [0, =) fixed, If(x) - 31(_,(7'

y 1 . 1 1 - -
= lim|f(x) - _TTI < Tim ”f - —“ = E. Thus, ”f - =|| < E implying
N pu = N> pu P

that p = p* by the uniqueness of best approximations from Rn' Since
this is true for any subsequence {pv} of {py} we must have that this
is also true for the full sequence {py3- That is, that p, converges
uniformly to p* on I and pointwise on [0, =). To complete this

argument we must prove that p]—k converges uniformly to pl—* on [0, =).

From the above discussion we have that FL converges pointwise to p—l*—
k
on [0, ») and, in fact, on any fixed closed interval [0, o], a > O,

F]k- converges uniformly to p* (due to the coefficient convergence).

In order to establish this final fact, we must examine the

coefficient convergence in more detail. Thus, let fp*(x)=a;_1x"']

+..‘+a6
with a”;_] > 0 (here we are using our hypothesis that 3p* = n - 1 and

p* € Rn) and let py(x) = a::x" L G ag where we know that the leading
nonzero coefficient of Pk must be positive. In addition, we have that

ag > a} as k > for j=0,1, ..., n wher2 a; = 0. Thus, there exists

¢ g : X ax*
vy > 8 such that k >y implies that a::_l > "2'] > 0 and |a§ - agl <1 for

Jj=0, ..., n -2, Thus, given ¢ > 0 there exists &§ > 0 such that




lm.‘. -
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a*
Bx) = LM+ ax , - 1X™2 e L+ (@ - 1) 2 2 since py(x) 2 ()

for k > v and p*(x) > p(x) for all x > & we have that

1 1 = 1
- 7 < [l * [t
for k > y and x > 6. On [0, §] we have that BL converges uniformly to p]—*

y k

E € _
<7+?—g

Thus, we may select K > y such that k > K implies ka}x) - p*}x)! < ¢ for
all x ¢ [0, §]. Hence, for k > K we have that ||-p—]; - 51?“ < ¢ implying

the des%red result.

Concluding Remarks

Observe that the auestion of whether or not a strong uniquenes; result
holds -for the case that f €.C3[0, ») with its best approximation é&-from Rn

h =

satisfying ap* = n-1 remains open. Likewise, the question of Lipschitz con-
f the best approximation operator remains open in this case.
f i

tinuity o

y of ti

A-second item of interest is that in ordinary rational approximation
on a finite interval, nonstandard (i.e., fewer) alternation due to
degenéracy of the best approximation may be unimportant as the set of f
with degenerate best approximations is nowhere dense [5, 7]. If the
corresponding result that {f: the best aporoximation p‘—* eRn has ap* < n}
was nowhere dense then we could expect to bg able to usually employ the
simpler theory of [8] for this problem. However, the continuity result
for degree n - 1 implies that every f with nonstandard alternation and
best approximation F];e Rn with ap* = n - 1 has all g sufficiently close

with nonstandard alternation and best approximations of degree n - 1. In




A
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this regard, an interesting question is to characterize those f for which
nonstandard alternation will occur. Some initial results in this direction

have been obtained by the second author and D. Leeming.
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